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Abstract

The perceptual magnet effect describes the phenomenon where
the perceptual space is shrunken near an existing category,
such that stimuli close to a prototype are perceived as more
similar to the prototype than they actually are. This study
extends the perceptual magnet effect from the well-studied
domain of speech perception to color perception. We propose
that, as in speech perception, the perceptual magnet effect
can be explained by a Bayesian model which assumes that
individuals use their knowledge of color category to optimally
infer the specific shade of a color while compensating for
uncertainty in the sensory signal. In two experiments,
we investigated the influence of the green component
(G-value) in the RGB color space on color categorization and
discrimination. Our results demonstrate that the perceptual
magnet effect is strongest near the centers of color categories
and weakest at the category boundaries. The Bayesian model
accurately predicted participants’ ratings for their perceived
difference between colors, highlighting the role of category
knowledge in perceptual inference. These findings suggest that
the perceptual magnet effect is not limited to speech perception
but can also be applied to color perception, emphasizing
the generalisability of Bayesian approaches to understanding
human cognition. Our study provides novel insights into
the interaction between color categories and the influence of
category structure on color perception.

Keywords: perceptual magnet effect; color perception; color
categorization

Introduction

Our perceptual experience is not a mere reflection of the
physical world, but is profoundly shaped by the categorical
knowledge we acquire throughout our lives (Feldman,
Griffiths, & Morgan, 2009). The process of organizing
stimuli into distinct categories fundamentally alters the
way we perceive these stimuli, a phenomenon known as
categorical perception. This effect is widespread in cognition
and perception and is characterized by both an enhanced
discrimination across category boundaries and a reduced
discrimination between within-category stimuli (Feldman et
al., 2009). Categorical perception has been widely observed
across various domains, including the perception of speech
sounds (Liberman, Harris, Hoffman, & Griffith, 1957), colors
(Bornstein & Korda, 1984) , facial expressions (Etcoff
& Magee, 1992), and even artificially created categories
(Goldstone, 1994).

A prominent example of categorical perception in speech
is the perceptual magnet effect, first reported by Kuhl et
al. (1991) in vowel perception. In this study, participants

were asked to provide ratings of category goodness for over
100 synthesised /i/ sounds. As presented in Figure 1, two
vowels were identified as a result of these ratings: one that
listeners consider as the best instance for the /i/(referred to
as the prototype, P), and one that was consistently judged
as a relatively poor exemplar of an /i/ vowel (referred
to as the nonprototype, NP). Kuhl and colleagues then
constructed a set of variants surrounding P and NP across
the vowel space, and asked listeners to 1) rate the category
goodness of the variants on the scale from 1 to 7, and 2)
discriminate between pairs of vowel sounds that varied in
their proximity to prototypical vowel categories. They found
that the perceived category goodness of /i/ vowels declined
systematically as stimuli were further away removed from
P. More importantly, discrimination was found to be poorer
for sounds near P compared to sounds further away from P,
and that this generalization was greater around P than NP.
Taken together, these results supported the hypothesis that the
distance between P and surrounding members is effectively
decreased. Viewing phonetic discrimination in spatial terms,
the perceptual space appears to be “warped”, effectively
pulling category members towards the prototype. The
perceptual magnet effect has been replicated and extended
in multiple studies (Kuhl, Williams, Lacerda, Stevens, &
Lindblom, 1992; Iverson & Kuhl, 1995), establishing it as
a robust phenomenon in speech perception.
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Figure 1: The prototype /I/ (P) and its 32 variants (open
circles) and the nonprototype (NP) and its 32 variants (closed
circles).



Using a Bayesian framework, Feldman et al. (2009)
has provided a computational account of the perceptual
magnet effect. In this model, the listener’s goal is to infer
the intended target production of a speaker based on the
noisy speech signal they receive. The model assumes that
listeners have prior knowledge of the distribution of speech
sounds within each phonetic category, which is modeled as
a Gaussian distribution. The listener then uses this prior
knowledge to optimally infer the intended target production.
The key insight of the model is that the optimal inference is
biased towards the center of the inferred category (i.e., the
prototype) due to the uncertainty in the speech signal. As
a result, perceptual magnet effect arises because this bias is
stronger for sounds near the category center and weaker for
sounds near the category boundary, leading to a warping of
perceptual space that mirrors the perceptual magnet effect
(see Figure 2).

Building on this work, the current project aims to extend
the Bayesian framework to explain categorical effects in
color perception. Like speech sounds, colors are organized
into distinct categories (e.g., red, blue, green) with a
graded structure, and cross-linguistic studies have provided
compelling evidence that color perception is influenced by
linguistic categories. For example, Roberson et al. (2000)
found that speakers of Berinmo, a language that makes
a categorical distinction between nol (yellowish-green)
and wor (greenish-blue), showed better discrimination of
colors across this boundary compared to English speakers.
Similarly, in the classic experiment by Winawer et al. (2007),
Russian speakers were found to be faster at discriminating
different shades of blue when they fall into different linguistic
categories in Russian (volubly and siniy) than when they were
from the same category, whereas English speakers showed no
such category advantage. Despite the clear category effect
in color perception, the existence and nature of a perceptual
magnet effect in color perception remains unclear. Like
speech perception, color perception is inherently ambiguous
because we need to infer the true reflective properties of
surfaces in different environment and lighting conditions.
Therefore, we propose to study perceptual magnet effect in
color perception by extending Winawer et al.’s (2007) color
discrimination paradigm to the blue-turquoise distinction.
If a Bayesian model, similar in structure to the model of
Feldman et al. (2009), can account for the influence of color
categories on perception, we predict that English speakers
will show poorer discrimination of colours near prototypical
blue and prototypical turquoise compared to colors at the
blue-turquoise boundary.

Experiment 1

Introduction

This experiment examines how the green component
(G-value) in the RGB color space affects the perception and
categorization of blue and turquoise colors. By systematically
varying the G-value of a blue color, we aim to investigate
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Figure 2: Predicted relationship between acoustic and
perceptual space in the case of (a) one category and (b) two
categories.

the perceptual boundaries between blue and turquoise and the
category goodness of each shade. Our findings will identify
the prototypes for blue and turquoise, establish continuous
and graded category memberships for different shades in the
blue-turquoise spectrum, and generate essential parameters
for Bayesian modeling in Experiment 2.

Methods

Participants A sample of 11 adult participants (7 females;
age: mean = 26, SD = 4.8) was recruited to take part in the
present study. All participants were fluent in English, but only
2 were native English speakers. All participants self-reported
to have normal color vision.

Remote and In-person Testing The experiment was
conducted either remotely (n = 1) or in-person (n = 10). In
the in-person setting, participants viewed and responded to
stimuli on the same computer that was used to present the
experiment stimuli. In the remote experimental condition, the
researchers conducted the experiment on their own computer
while sharing their screen with the participant via Zoom,
a remote conferencing platform. In both experimental
settings, experimenters manually entered and recorded the
participants’ responses to the computer used to generate the
experimental stimuli.

Apparatus All participants  (including those tested
remotely and those tested in-person) completed the
experiment using a MacBook with Liquid Retina XDR
Display, with the True Tone feature turned off and screen
brightness set to maximum. All participant responses were
recorded and stored using the same computer system that
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Figure 3: Examples of the experimental stimuli. The prototypical blue is defined in Regier et al., 2005. Different variations of
blue are created by setting the R value as 38, B value as 203, and varying the G-value in the RGB triplets for the colors.

was used to present the experimental stimuli.

Stimuli Twenty-five color blocks were generated for the
present experiment. These include one prototypical blue
color and 24 variations of it. The prototype is identified by
the World Color Project (Regier, Kay, & Cook, 2005), which
described the prototypical blue with the following parameters
in the Munsell Color Palette: Hue (or color) = SPB, Value (or
lightness/darkness) = 5, Chroma (weak/strong) = 12. This
color can also be described by the RGB triplet [38, 124, 203]
(Munsell color palette, n.d.). Twenty-four variations of blue
were created by varying the “G,” or the green component,
in the RGB triplet for the blue prototype. The 25 G values
ranged from 14 to 254 with increments of 10 (for examples
of colors used, see Figure 3).

Procedure During the experiment, the participants were
shown the 25 color stimuli, one at a time, in random
order. For each color, they answered two questions: 1) “Is
this color blue or turquoise?”, and 2) “How good is this
color an example of the category you chose?” For the first
question, they were asked to respond by indicating “Blue”
or “Turquoise”. For the second question, they were asked
to provide a score from 1 (worst representation of the color)
to 7 (best representation of the color). Participants were
given an unlimited viewing time for each color stimulus,
allowing them to observe the color for as long as necessary
before providing their response. Each participant viewed and
responded to each color once.

Data Analyses For each color stimulus, the number
of participants who responded Blue to the first question
were recorded and then divided by the total number of
participants, yielding the possibility of identifying each
color as Blue. Then, for all trials where participants
responded Blue, Goodness ratings were averaged across
participants to produce a mean Goodness score for each
color stimulus. Similarly, for all trials where participants
responded Turquoise, Goodness ratings were averaged across
participants to produce a mean Goodness score for each color.

Results

Identification of the Color Blue We observed large
variations in participants’ perception of blue as a function of
the G-value in the RGB color space. As depicted in Figure
2A, the identification of blue remained relatively high and
stable for G-values ranging from 14 to 150. Specifically, the
probability of identifying a color as blue was consistently
above 90% for G-values up to 150 but sharply declined to
below 20% as G-values approached 200. This observation
suggests a perceptual boundary or threshold around a G-value
of 130, beyond which the color is less frequently recognized
as blue, aligning closely with our defined prototype.

Goodness Ratings The assessment of the Goodness ratings
for both blue and green hues, as a function of G values, is
illustrated in Figure 2B. For blue, the goodness ratings begin
near a maximum (approximately 6 on a scale from 1 to 7)
for G-values less than 50, followed by a gradual decline in
perceived quality as G-values increase. This downward trend
continues until a G-value of 150, where the ratings sharply
drop, reaching their lowest at approximately G-value 190.
Conversely, the goodness ratings for green show an inverse
relationship. They start at their lowest when the G-values are
below 100, gradually increasing as the G-values rise, with a
significant increase noted past a G-value of 150. This rise
continues, reaching a peak for the highest G-values tested,
demonstrating a strong correlation between higher G-values
and the perceived quality of green.

Discussion

The behavioral data indicates that not all shades in a
category are equally good exemplars of the category. The
results highlight a perceptual gradient in the recognition and
qualitative assessment of colors, influenced markedly by the
modulation of the green component in the RGB spectrum. As
the G-value increases, there is a clear perceptual shift from
blue to green, which is not only recognized by participants
but also reflected in their quality assessments of the colors.
This shift emphasizes the importance of the green component
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Figure 4: A. Effect of G values on Identifying the stimuli as blue. X axis shows G values used to create the stimuli, ranging
from 14 to 254. Y axis shows the percentage of participants who identified the stimuli as blue. B. Effect of G values on
average goodness ratings. The rating for how good is a stimulus a representative of blue, ranging from 1 to 7, is averaged across
participants to produce the average goodness of rating. X axis shows the G values and y axis shows the average goodness

ratings.

in color categorization and suggests a competitive interaction
between the two color categories in terms of perceptual
quality.

Experiment 2
Introduction

Building on the findings from Experiment 1, which
established the boundaries and prototypes for blue and
turquoise, Experiment 2 aims to replicate and model the
perceptual magnet effect in color perception. By presenting
participants with pairs of colors that differ in G-values
and asking them to rate the perceived difference between
the colors, we seek to demonstrate that discrimination
is enhanced near category boundaries and reduced near
category centers. A comparison of our behavioral data
with predictions from a Bayesian model will provide a
computational explanation for the observed effects.

Methods

The participants, experiment settings (in-person vs. remote),
apparatus, and stimuli for Experiment 2 were the same with
those for Experiment 1.

Similarity Discrimination Task In the course of the
experiment, participants were presented with pairs of color
stimuli. The G values of each color pair differed by 10,
resulting in a total of 24 stimulus pairs. The G values of these
pairs ranged from 14 and 24, to 24 and 34, and so on, up
to 244 and 254. The stimuli pairs were presented in random

order and participants were asked to rate, with a scale from
1 to 7, on how different the two colors were, with 1 being
the most similar and 7 being the most different. Participants
were given an unlimited viewing time for each color stimulus,
allowing them to observe the color for as long as necessary
before providing their response. Each participant viewed and
responded to each color once.

Data Analyses For each color pair, participants’ answers
were averaged to produce a mean difference score for that pair
of color stimuli. To explain the behavioral data, we used the
Bayesian model developed by Feldman and Griffiths (2007)
to simulate the similarity ratings. The expected value of the
perceived color given the G-values tested, aggregating over
all categories, could be modeled as Equation 1 below:
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where T represents the perceived G-value; S represents
the G-value of the stimuli; ¢ represents a given category
(in our case, blue or turquoise); u. and G, represent the
mean and standard deviation of the category, respectively;
and oy represents the noise of the stimuli. The term
describing the posterior probability in the above equation was
estimated from the following logistic equation that describes
the identification of a given category:
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of free parameters, the model’s parameters were derived, to
the greatest extent possible, from empirical measurements.
Among these parameters, y; and up, were the G-value for
the prototypical blue and the G-value that yielded the largest
Goodness rating for turquoise, respectively. The sum of the
other two parameters, 6. and Gg, were chosen to maximize
the fit of the model.

To make a direct comparison between the Bayesian model
and the behavioral data, we first used Equation 1 to estimate
the expected G-values for all G-values tested, and then
found the estimated perceptual distance, i.e., the difference
of expected values between neighboring G-values tested.
Assuming linear relationship between perceptual distance
and participant’s similarity ratings, we derived the model
estimates from the following equation:

Erating=m=+D+n 3

where D is the estimated perceptual distance and m and n are
fitted constants.

Results

The results from Experiment 2 demonstrated a nuanced
perception of color differences as G-values incrementally
changed within the stimulus pairs. Figure 3 shows perceptual
difference rating from participants as well as predictions from
the Bayesian model.

Behavioral Data Participants’ ratings indicated a distinct
pattern of perceived differences between adjacent color pairs.
Initially, for G-values from 14 to about 100, the perceived
differences were moderate, averaging between ratings of 3
to 4. This suggests that participants could discern subtle
variations in hue at lower G-values. As G-values increased
beyond 100, perceived differences peaked, particularly
between G-values of 150 to 200, where ratings approached an
average of 6, indicating a heightened sensitivity to changes in
this range.

Interestingly, the perceived differences declined once again
for G values exceeding 200, stabilizing at a lower rating of
around 2 to 3. Worth-noticing, the peak in G-values between
160-200 is the critical value between the blue category and
green category. This reduction in perceived difference ratings
at higher G-values suggests a stage in sensitivity to changes,
potentially indicating a saturation point in hue differentiation
or a perceptual grouping of higher G-values under a single
color categorization.

Bayesian Modeling Parameters in the Bayesian model
employed in Experiment 2 were derived from empirical
values. The model’s parameters were chosen to maximize the
fit between the simulated predictions and the behavioral data
collected from participants. Below we outline the parameters
used in the simulation and their implications:

e up = 124: represents the prototypical G-value for the color
blue.

e up = 255: represents the G-value at which the highest
goodness rating for turquoise was observed.

* &, = 50: reflects the variability within the color categories.

e 0, = 55: measures the noise level associated with the
stimulus.

e M= 60.95 and N = 2.60: constants fitted to linearly
transform the model’s output to match the scale used in
participant ratings.

The effectiveness of these parameters was validated
through their ability to closely simulate the actual difference
ratings given by participants, as illustrated in Figure 3. This
alignment suggests that our model accurately reflects the
cognitive processes underlying color discrimination tasks.

Discussion

The results of this experiment provide compelling evidence
for the perceptual magnet effect. The observed pattern of
perceived difference ratings, which peak near the middle
G values and decrease towards the extremes of the blue
and turquoise ranges, suggests that the perceptual space is
distorted, with colors near the category center being perceived
as more similar to each other. This compression of perceptual
space is most pronounced in regions of unambiguous color
categorization, typically near the prototypical colors or the
centers of color categories. In these areas, the perceptual
magnet effect is strongest, leading to a reduction in the
perceived difference between colors that are close to the
category prototype. Conversely, the effect is weakest at
the category boundaries, where colors are more ambiguous
and less clearly associated with a specific category. The
diminished perceptual magnet effect at category borders
allows for better discrimination between colors that fall on
either side of the boundary, as these colors are perceived as
more distinct from each other.

The simulation results align remarkably well with the
observed behavioral data. However, it is important to note
that the model parameters used in this simulation should be
considered as initial estimates rather than definitive values
for color perception. Given the variability in individuals’
perceived color categories (Regier et al., 2005), it is probable
that the actual parameter values may differ from those used
in the simulation. Furthermore, it is conceivable that these
parameters exhibit inter-individual differences.

General Discussion

The two experiments reported in this study provides evidence
for the perceptual magnet effect in color perception, where
uncertainty in color stimuli leads participants to infer a color
that is closer to the mean of a color category than the
specific shade they actually viewed. Experiment 1 shows
that not all colors are perceived as equally good exemplars
of their color categories. Experiment 2 demonstrates that
people are better at discriminating colors that are far from the
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Figure 5: Perceived difference of colors with adjacent G-values. X values for the data points represent G-values used to create
the color with the lower G value in the stimulus pair shown to the participant. The other color in the stimulus pair always had
a G-value that was larger by 10. The blue line shows perceived difference ratings given by the participants, while the red line

shows ratings predicted by the Bayesian model.

centers of perceptual categories, directly demonstrating the
expanded perceptual space at category borders. We have also
detailed a Bayesian model of color perception, which fits the
empirical data closely and provides an explanation for better
discrimination colors with subtle changes in green component
at perceptual boundaries.

The interest in the influence of categorization on color
perception is not new. In their study, Winawer et al. (2007)
found that Russian speakers exhibited faster discrimination
between colors that belonged to different linguistic categories
in Russian, compared to colors within the same category.
In contrast, English speakers did not show any category
advantage when tested on the same stimuli. Here, we propose
that these results could be explained by the perceptual magnet
effect. The current study reveals that individuals are more
adept at perceiving differences between colors that lie near
the boundaries of two categories, as opposed to colors
situated near the center of a single category. This observation
can be attributed to the expansion of perceptual space
at category borders, allowing for enhanced discrimination
between colors on either side of the boundary, as they are
perceived as more distinct from one another. Conversely, the
compression of perceptual space at category centers makes
it more challenging to discern differences between colors
within this range. In another study, Huttenlocher et al. (2000)
reported that the presence of category structure in visual
stimuli allowed participants to compensate for memory trace
uncertainty. We propose that color perception confronts a

similar computational challenge. Similar to inferring a visual
stimulus value while correcting for memory uncertainty,
participants in our study must infer the specific shade of a
color while compensating for uncertainty in the RGB values
presented.

The results from our experiments demonstrate that the
perceptual magnet effect, typically discussed in the context
of speech perception, can also be applied to visual
color perception. This effect can be understood as the
consequence of optimally solving the statistical problem of
color perception using knowledge about the structure of color
categories. By employing Bayesian modeling, we accurately
predicted the participants’ ratings of color similarity and
difference, highlighting the influence of prior knowledge and
category means on perceptual inference. However, while the
current parameter estimates serve as a solid foundation for
understanding color perception, further research is necessary
to refine these values and account for potential individual
differences. Future studies could focus on collecting more
extensive behavioral data across participants from different
language backgrounds, to better characterize the variability
in goodness ratings and to derive more precise parameter
estimates. Additionally, exploring the impact of different
parameter settings on the model’s predictions could provide
valuable insights into the robustness and generalizability of
the perceptual magnet effect across various color categories.

In summary, this study underscores the significant overlap
and interaction between color categories, revealing how



subtle changes in a single color component can shift
perceptual judgments largely. Future research could extend
this model to other aspects of visual perception or apply
similar frameworks to different sensory modalities, further
exploring the universal applicability of Bayesian approaches
to understanding human cognition.
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